Involvement of human blood arylesterases and liver microsomal carboxylesterases in nafamostat hydrolysis.
نویسندگان
چکیده
Metabolism of nafamostat, a clinically used serine protease inhibitor, was investigated with human blood and liver enzyme sources. All the enzyme sources examined (whole blood, erythrocytes, plasma and liver microsomes) showed nafamostat hydrolytic activity. V(max) and K(m) values for the nafamostat hydrolysis in erythrocytes were 278 nmol/min/mL blood fraction and 628 microM; those in plasma were 160 nmol/min/mL blood fraction and 8890 microM, respectively. Human liver microsomes exhibited a V(max) value of 26.9 nmol/min/mg protein and a K(m) value of 1790 microM. Hydrolytic activity of the erythrocytes and plasma was inhibited by 5, 5'-dithiobis(2-nitrobenzoic acid), an arylesterase inhibitor, in a concentration-dependent manner. In contrast, little or no suppression of these activities was seen with phenylmethylsulfonyl fluoride (PMSF), diisopropyl fluorophosphate (DFP), bis(p-nitrophenyl)phosphate (BNPP), BW284C51 and ethopropazine. The liver microsomal activity was markedly inhibited by PMSF, DFP and BNPP, indicating that carboxylesterase was involved in the nafamostat hydrolysis. Human carboxylesterase 2 expressed in COS-1 cells was capable of hydrolyzing nafamostat at 10 and 100 microM, whereas recombinant carboxylesterase 1 showed significant activity only at a higher substrate concentration (100 microM). The nafamostat hydrolysis in 18 human liver microsomes correlated with aspirin hydrolytic activity specific for carboxylesterase 2 (r=0.815, p<0.01) but not with imidapril hydrolysis catalyzed by carboxylesterase 1 (r=0.156, p=0.54). These results suggest that human arylesterases and carboxylesterase 2 may be predominantly responsible for the metabolism of nafamostat in the blood and liver, respectively.
منابع مشابه
An in vivo approach for globally estimating the drug flow between blood and tissue for nafamostat mesilate: the main hydrolysis site determination in human.
Nafamostat mesilate, an ester drug with extensive hydrolysis in vivo, exhibits species difference in the relative contribution for its hydrolysis in blood and tissues. For the rat, the main hydrolysis site may be blood and human may be tissue (mainly by liver). The paper gave in vivo evidence that human tissue may give more contribution for its hydrolysis. In the initial phase of drug administr...
متن کاملInvolvement of liver carboxylesterases in the in vitro metabolism of lidocaine.
Although lidocaine has been used clinically for more than half a century, the metabolism has still not been fully elucidated. In the present study we have addressed the involvement of hydroxylations, deethylations, and ester hydrolysis in the metabolism of lidocaine to 2,6-xylidine. Using microsomes isolated from male rat liver, we found that lidocaine is mainly metabolized by deethylation to N...
متن کاملSubstituted trifluoroketones as potent, selective inhibitors of mammalian carboxylesterases.
A series of substituted trifluoroketones were tested as inhibitors of mammalian liver microsomal carboxylesterase(s) hydrolyzing a variety of substrates including malathion, diethylsuccinate (DES) and p-nitrophenyl acetate (p-NpAc). The trifluoroketones used were very potent "transition state" inhibitors of crude mouse and human liver microsomal carboxylesterases as well as commercial porcine l...
متن کاملDmd060095 2058..2067
N-(2,4-dichlorophenyl)-5-methyl-1,2-oxazole-3-carboxamide (UTL-5g), a potential chemoand radioprotective agent, acts as a prodrug requiring bioactivation to the active metabolite 5-methylisoxazole-3carboxylic acid (ISOX). UTL-5g hydrolysis to ISOX and 2,4-dichloroaniline (DCA) has been identified in porcine and rabbit liver esterases. The purpose of this study was to provide insights on the met...
متن کاملNeutral and acid retinyl ester hydrolases associated with rat liver microsomes: relationships to microsomal cholesteryl ester hydrolases.
We recently reported the presence of a neutral, bile salt-independent retinyl ester hydrolase (REH) activity in rat liver microsomes and showed that it was distinct from the previously studied bile salt-dependent REH and from nonspecific carboxylesterases (Harrison, E. H., and M. Z. Gad. 1989. J. Biol. Chem. 264: 17142-17147). We have now further characterized the hydrolysis of retinyl esters b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and pharmacokinetics
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2006